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NI Queue Manager

 FPGA-based Prototyping Platform

 PCI-X RDMA-capable NIC in cluster environment

 Buffered crossbar switch

 Goals

 Confirm buffered 

crossbar behavior

 Interprocessor 

communication 

research
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NI Queue Manager - Key Concepts

Head-Of-Line (HOL) Blocking
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 HOL Blocking reduces switch throughput

Idle!
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NI Queue Manager - Key Concepts

Virtual Output Queues (VOQs)
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NI Queue Manager - Key Concepts

Traffic Segmentation Schemes
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 Traffic segmented to optimize switching

 Variable-Size MultiPacket (VSMP) Segmentation well suited to 

buffered crossbar

8



Presentation Outline

 NI Queue Manager

 Introduction

 Key Concepts

 Architecture & Implementation

 NI Design for CMPs

 NI Design Goals

 NI Design Issues

 Proposed NI Design

 Conclusions & Future Work

9



NI Queue Manager – Architecture & Implementation

 Virtual Output Queues (VOQs)

 VOQ migration to external memory

 Hardware-managed linked lists

 VSMP Segmentation

 Scheduling

 Flow Control

 3 major versions implemented
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NI Queue Manager – Architecture & Implementation

Architecture
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NI Queue Manager – Architecture & Implementation

Packet Sorter
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NI Queue Manager – Architecture & Implementation

 Sorts packets according to:

 destination

 other criteria (e.g. priority)

 Notifies Scheduler about incoming traffic

 Light-weight packet processing

 e.g. enforce maximum packet size

 2 versions implemented

 with packet segmentation

 without packet segmentation
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NI Queue Manager – Architecture & Implementation

On-Chip VOQs

Linked List 

Manager

Scheduler Flow Control

Packet 
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Host
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NI Queue Manager – Architecture & Implementation

 Accumulates traffic in VOQs

 VOQs implemented as:

 Circular buffers in single statically 

partitioned on-chip memory

 Xilinx FIFOs

 2 versions implemented

 VOQs in BRAM

 VOQs in Xilinx FIFOs
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NI Queue Manager – Architecture & Implementation

Linked List Manager

Linked List 

Manager

Scheduler Flow Control

Packet 
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(PCI-X)

Network
(RocketIO)

External Memory

(Off-chip VOQs)

Memory Controller

Packet 

Sorter

On-Chip 

VOQs

16



Linked List Manager

 Performs Segment Transfers

 variable-size segments

 fixed-size segments

Manages Linked Lists

 Head, Tail pointers in on-chip memory

 Next Block pointers in DRAM (along data)

 Optimization Techniques

 Free Block Preallocation

 Free-List Bypass

 FSM-based Implementation
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Linked List Manager

1. From On-Chip VOQs to Packet Processor

2. From On-Chip to Off-Chip VOQs

3. From Off-Chip VOQs to Packet Processor
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Linked List Manager

1. From On-Chip VOQs to Packet Processor

2. From On-Chip to Off-Chip VOQs
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Linked List Manager

1. From On-Chip VOQs to Packet Processor
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Linked List Manager

1. From On-Chip VOQs to Packet Processor

2. From On-Chip to Off-Chip VOQs

3. From Off-Chip VOQs to Packet Processor
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Linked List Manager

 Large VOQs migrate to DRAM

 Traffic stored in linked-lists of fixed-size blocks 

 Dynamic allocation of external memory

 Block size needs to be:

 Large to benefit from DRAM burst length

 Small to minimize size of On-Chip VOQs

 2 Basic Operations

 Enqueue

 Dequeue

 Free blocks stored in Free-Block List

Linked List Management
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Linked List Manager

 Enqueue

 Get free block from Free-Block list

 Write data in the new block

 Update Next-Block pointer of the last block

 Update VOQ Tail pointer

 Dequeue

 Read data from the first block

 Read Next-Block from first block

 Update VOQ Head pointer 

 Put free block in Free-Block list

Basic Linked List Operations
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Linked List Manager

Enqueue/Dequeue Example
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24

DRAM

0

1

…
5

15

…



Linked List Manager

Finite State Machine (FSM)

DEQ1

Idle

DEQUEUE

DEQ2
PUSH FREE BLOCK

PUSHFB2PUSHFB2

POP FREE BLOCK

POPFB2POPFB2 ENQ1

ENQUEUE

ENQ2

SRAM2XBAR

SRAM2XBAR2

SRAM2XBAR1
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Linked List Manager

Finite State Machine (FSM)

DEQUEUE PUSH FREE BLOCK

POP FREE BLOCK ENQUEUE

On-Chip VOQs

to Packet 

Processor

IDLE
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NI Queue Manager

Scheduler

Scheduler Flow Control

Packet 

Processor
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(PCI-X)
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Scheduler

 Keeps track of each VOQ

 On-chip occupancy

 Off-chip occupancy

 Employs Flow Control (network & local)

 Number of sent data words

 Number of credits

 Implements Scheduling

 Builds VOQ eligibility masks 

 Enforces scheduling policy

 Instructs Linked List Manager
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Scheduler

 Determining Eligibility

 One eligibility mask for each kind of transfer

 Eager approach

 Lazy approach

 Scheduling Policy

 Round-Robin

 Weighted Round-Robin

 Deficit Round-Robin

 Strict Priority

 Starvation?

Scheduling Issues
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NI Queue Manager

Packet Processor

Packet 

Processor

Host
(PCI-X)
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(RocketIO)
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Packet 
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Packet Processor

 Processes Network Traffic

 Receives variable-size segments

 Creates autonomous network packets

 Performs 3 Basic Operations

 Insert header

 Modify header

 Delete header

 Implemented as 3-stage pipeline

 Greatly depends on packet nature

 RDMA packets well suited
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Packet Processor

Example of packet processing

= Packet Header = Packet Body

Segment 1Segment 2Seg 3Seg 4Seg 5

Packet 1Pck 2Pck 3Packet 4Packet 5

Modify

Insert

DeleteModify

InsertInsert

Insert

:: : : :

= End of Packet:

Traffic passing through Packet Processor
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NI Queue Manager

 3 major versions

 Full

 “No external memory”

 “No VSMP segmentation”

 Variations of individual modules

 Packet Processor
 with/without segmentation

 On-Chip VOQs
 with BRAM/Xilinx FIFOs

 Linked List Manager
 with/without external memory support

Implementation
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NI Queue Manager

FPGA Hardware Cost Results (8 VOQs)

Module LUTs Slices Flip Flops BRAMs Gate Count

Packet Sorter with segmentation 179 (1%) 135 (1%) 80 (1%) 0 (0%) 1909

Packet Sorter no segmentation 42 (1%) 25 (1%) 12 (1%) 0 (0%) 392

On-Chip VOQs BRAM 320 (1%) 236 (1%) 170 (1%) 31 (16%) 2035342

On-Chip VOQs Xilinx FIFOs 904 (2%) 1408 (7%) 1648 (4%) 32 (16%) 2119015

Scheduler 2240 (5%) 1256 (6%) 428 (1%) 1 (1%) 86226

Linked List Mgrwith ext mem 680 (1%) 365 (1%) 425 (1%) 0 (0%) 7069

Linked List Mgrno ext mem 33 (1%) 23 (1%) 18 (1%) 0 (0%) 426

Packet Processor 521 (1%) 511 (2%) 617 (1%) 0 (0%) 9983

Queue Mgr Version LUTs Slices Flip Flops BRAMs Gate Count

Full 2962 (7%) 2106 (10%) 1571 (3%) 34 (17%) 2263151

No External Memory 2713 (6%) 1900 (9%) 1467 (3%) 34 (17%) 2260321

No VSMPS 3430 (8%) 2639 (13%) 2286 (5%) 37 (19%) 2471047
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NI Queue Manager

Network Performance Results*

Throughput measurements using

unbalanced traffic patterns.

Average Delay vs. Input Load under

uniform traffic. Max load is 96%.

*The experiments were conducted by Vassilis Papaefstathiou, member of the CARV team

Verified previous theoretical and simulation results about 

the behavior and performance of buffered crossbar.
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IPC: NI Design Issues 

 High Performance

 Low Latency

 High Bandwidth

 Scalability

 Reliability

 Protection & Security

 Communication Overhead Minimization

NI Design Goals
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NI Design Issues 

NI Placement

1. I/O Bus

2. Memory Bus

3. Cache

4. CPU Registers

Processor 

Proximity

Higher Performance 

Proprietary Interfaces

Resource Sharing

Less Buffer Space

Lower Performance 

Standard Interfaces

More Buffer Space
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NI Design Issues 

 Programmed IO (PIO)

 Uncached stores, loads or I/O instructions

 Low bandwidth

 Cached stores, loads

 data transferred in cache blocks

 requires coherence

 Occupies Processor to copy data

 Using Direct Memory Access (DMA)

 Decouples Processor

 Requires Virtual to Physical Address Translation

NI Data Transfer Mechanisms

40



NI Design Issues 

 Traditional approach

 System Call to Access NI

 Very Costly (high latency)

 User-level NIs (ULNIs)

 Bypass the OS

 Mapped to Virtual Memory

 Uses OS paging mechanism 

for protection

NI Virtualization & Protection

User-level    

Software

Operating   

System

NI Hardware

User-level  

Software

Operating  

System

NI Hardware
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Proposed NI Design

 Targeted to future Chip Multiprocessors
 thousands to millions of nodes

 Tightly coupled with the processor

 Low Complexity/Cost
 Compared to processor and local memory

 Resources (e.g. memory)
 Shared with Processor

 Dynamically allocated (only to active connections)

 Low Overhead transfer initiation

 Powerful Communication Primitives
 Bulky Data Transfers

 Control & Synchronization Traffic

Design Goals / Desired Features
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Proposed NI Design

Target Hardware/System

Xilinx XUP board

CPU: PowerPC

OS: Linux

On-chip BRAM

 Scratchpad

 Cache?

External DRAM

 10 Gbps Network

 RocketIO
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Proposed NI Design

Target Hardware/System

PowerPC
@ 266 MHz

On-chip Memory
(low latency, high throughput, 

8 dual-port BRAM banks)

Network

Network Interface simple 

and small compared to 

CPU and its local memory

NI

PLB

OCM ?

FPGA

10 Gbps

10 Gbps

@133 MHz

DRAM
@133MHz

@166 MHz

Xilinx XUP

Shared among

CPU and NI
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Proposed NI Design

 Remote DMA

 Bulky Data Transfers

 Producer-Consumer

 Facilitates Zero-Copy Protocols

 Requires Virtual-to-Physical Translation

Message Queues

 Low Latency, Minimal Overhead communication

 Small Data Transfers

 One-to-One, One-to-Many, Many-to-One

 Powerful synchronization primitive

Communication Primitives
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Proposed NI Design

Message Queues

Queues

 One-to-One: e.g. Small Data Transfers

 One-to-Many: e.g. Job Dispatching

 Many-to-One: e.g. Synchronization

47



Proposed NI Design

Mechanism for

 Sending Messages

 Initiating RDMA operations

 A Connection consists of:

 Queue Pair (Incoming & Outgoing)

 Information needed for RDMA

 Various Queue, Flow Control metadata

 Connection Types

 One-to-One (lower overhead, higher security)

 Many-to-Many (better resource utilization)

Connections
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Proposed NI Design

 One-to-One

 Incoming & Outgoing Queue is One-to-One

 Many-to-Many

 Incoming Queue is Many-to-One Or/And                 

Outgoing Queue is One-to-Many

Connection Types

49



Proposed NI Design

 One-to-One: Local Communication

 Many-to-Many: Global Communication

Connection Types - Example
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Proposed NI Design

Connection Table (CT)

Connection Table (CT)

ConnectionID or CID

CID

Scratchpad

CID

CID

CID

CID

CID
…

Scratchpad

Node Memory

Connection Table Entry (CTE)

…

 Connections reside in Connection Table in 

the form of Connection Table Entries (CTEs)
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Proposed NI Design

 Each CTE stores

 Destination Info (for one-to-one)

 Protection Info (for many-to-many)

 Incoming/Outgoing Queue Info

 Incoming/Outgoing RDMA Info

 Flow Control Info

 Other Info

 e.g. Notification Type

Connection Table Entry (CTE)
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Proposed NI Design

Connection Table Entry for Xilinx XUP

B8 (32)B7 (32)B6 (32)B5 (32)B4 (32)B3 (32)B2 (32)B1 (32)CID

Base (6) Start (8) End (8) Head (10)

System-level

Outgoing Queue Info

Outgoing 

RDMA Info

Base (6) Start (8) End (8) Tail (10)

System-level

Incoming Queue Info

Incoming

RDMA Info

Outgoing

Tail (10)

Incoming

Head (10)

User-level

Outgoing Queue Info

User-level

Incoming Queue Info

System-level

Connection Info

System-level

Connection Info

Remote 

Node ID (24)

Remote

CID (16)
PGID (16)
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Proposed NI Design

Software Interface

 Send Message or Initiate RDMA

 Read Head/Tail of Outgoing Queue

 Post Descriptor

 Write Tail of Outgoing Queue

 (Poll Head of Outgoing Queue)

 Receive Message or RDMA Notification

 Poll Tail of Incoming Queue (or get Interrupt)

 Read Message (or Descriptor)

 Write Head of Incoming Queue
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Proposed NI Design

Software Interface - Descriptors
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Proposed NI Design

Protection – Intranode Protection

Process 13

Kernel

NI Hardware

Process 42

Process 27

User-Level

 Isolation of malicious processes. Not allowed to: 

 Read or write data of connections of other processes

 Corrupt connections of other processes
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Proposed NI Design

Protection – Internode Protection

 Isolation of compromised node. Not allowed to: 

 Compromise other nodes

 Corrupt connections of other processes

Node A Node B

Node D Node C

Node E
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Proposed NI Design

Protection in the Proposed NI

 Creation of 3 Protection Zones

CID

CID

CID

CID

CID

CID

CID

CID

Connection Table
Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 Bank 8

High protection

e.g. banks written 

only by special NI 

hardware or run-time 

system

Moderate protection

e.g. banks written only by 

system-level software 

(e.g. kernel driver)

Low protection

e.g. banks written by 

everyone including 

user-level software
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Proposed NI Design

Controlling Access to the CT

 Distinguish User-level from Kernel-level

 Use of Shadow Address Spaces

 Double the required Address Space

Mapped to system-

level process

Virtual Address Space

Physical Address Space

CTE

0xFFFF1ABC

0xFFFF0ABC

0xDEADBEEF Normal Physical 

Address Space

Mapped to user-

level process

Shadow Physical 

Address Space

0x123456EF

Connection Table
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Proposed NI Design

Controlling Access to the CT

 Distinguish different User-level processes

 Fine-grain protection 

Process 1

virtual page

Virtual Address Space

Connection TableProcess 1

physical page

Physical Address 

Space

Process 2

virtual page

Process 3

virtual page

Process 2

physical page

Process 3

physical page

Process 4

physical page

32 CTEs

Process 4

virtual page

32 CTEs

32 CTEs

32 CTEs

Page
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Conclusions & Future Work

 NI Queue Manager
 Feasibility and Effectiveness of VSMPS

 Confirmed buffered crossbar results

 Novel Packet Processing Mechanism
 Eliminates need for reassembly

 Proposed NI Design 
 Lightweight, well suited to future CMPs

 Powerful communication primitives
 Message Queues, Remote DMA

 Notion of Connections/Queues

 Versatile Protection & Security Mechanisms

Conclusions
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Conclusions & Future Work

 NI Queue Manager

 Scalability

 Dynamic memory allocation for On-Chip VOQs

 Proposed NI Design

 Process migration

 Flow control

 Efficient cache coherence support

Future Work
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Thank You!
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