
University of Crete

School of Sciences & Engineering

Computer Science Department

Master Thesis

by

Michael Papamichael

Network Interface Architecture and Prototyping

for Chip and Cluster Multiprocessors

Supervisor

Prof. Manolis G.H. Katevenis

Heraklion, Crete, July, 2007

Presentation Outline

 NI Queue Manager

 Introduction

 Key Concepts

 Architecture & Implementation

 NI Design for CMPs

 NI Design Goals

 NI Design Issues

 Proposed NI Design

 Conclusions & Future Work

2

Presentation Outline

 NI Queue Manager

 Introduction

 Key Concepts

 Architecture & Implementation

 NI Design for CMPs

 NI Design Goals

 NI Design Issues

 Proposed NI Design

 Conclusions & Future Work

3

NI Queue Manager

 FPGA-based Prototyping Platform

 PCI-X RDMA-capable NIC in cluster environment

 Buffered crossbar switch

 Goals

 Confirm buffered

crossbar behavior

 Interprocessor

communication

research

4

Introduction

Presentation Outline

 NI Queue Manager

 Introduction

 Key Concepts

 Architecture & Implementation

 NI Design for CMPs

 NI Design Goals

 NI Design Issues

 Proposed NI Design

 Conclusions & Future Work

5

NI Queue Manager - Key Concepts

Head-Of-Line (HOL) Blocking

12

121

2

Switching Fabric
Input Queues Outputs

1

2

1

2

HOL Blocking

 HOL Blocking reduces switch throughput

Idle!

6

NI Queue Manager - Key Concepts

Virtual Output Queues (VOQs)

1

2

1

2

1

2

Switching Fabric
Input Queues Outputs

1

2

1

2

 VOQs eliminate HOL Blocking

VOQs

7

NI Queue Manager - Key Concepts

Traffic Segmentation Schemes

300 160 80

68
256

256 B3 segments, S

40

256

580 bytes

Variable-size Multipacket seg.

300 160 8040

256256 256

768 bytes

3 segments, S = 256 B

Fixed-size Multipacket segments

300 16040 80

6464646464646464646464

704 bytes

11 segments, S = 64 B

Fixed-size Unipacket segments

300 160 8040

256 160

256 B5 segments, S

80

580 bytes

Variable-size Unipacket seg.

4
0

4
4

 Traffic segmented to optimize switching

 Variable-Size MultiPacket (VSMP) Segmentation well suited to

buffered crossbar

8

Presentation Outline

 NI Queue Manager

 Introduction

 Key Concepts

 Architecture & Implementation

 NI Design for CMPs

 NI Design Goals

 NI Design Issues

 Proposed NI Design

 Conclusions & Future Work

9

NI Queue Manager – Architecture & Implementation

 Virtual Output Queues (VOQs)

 VOQ migration to external memory

 Hardware-managed linked lists

 VSMP Segmentation

 Scheduling

 Flow Control

 3 major versions implemented

10

Overview

NI Queue Manager – Architecture & Implementation

Architecture

Linked List

Manager

Scheduler Flow Control

Packet

Processor

Host
(PCI-X)

Network
(RocketIO)

External Memory

(Off-chip VOQs)

Packet

Sorter

On-Chip

VOQs

Memory Controller

11

NI Queue Manager – Architecture & Implementation

Packet Sorter

Linked List

Manager

Scheduler Flow Control

Packet

Processor

Host
(PCI-X)

Network
(RocketIO)

External Memory

(Off-chip VOQs)

Packet

Sorter

On-Chip

VOQs

Memory Controller

12

NI Queue Manager – Architecture & Implementation

 Sorts packets according to:

 destination

 other criteria (e.g. priority)

 Notifies Scheduler about incoming traffic

 Light-weight packet processing

 e.g. enforce maximum packet size

 2 versions implemented

 with packet segmentation

 without packet segmentation

13

Packet Sorter

NI Queue Manager – Architecture & Implementation

On-Chip VOQs

Linked List

Manager

Scheduler Flow Control

Packet

Processor

Host
(PCI-X)

Network
(RocketIO)

External Memory

(Off-chip VOQs)

On-Chip

VOQs

Memory Controller

Packet

Sorter

14

NI Queue Manager – Architecture & Implementation

 Accumulates traffic in VOQs

 VOQs implemented as:

 Circular buffers in single statically

partitioned on-chip memory

 Xilinx FIFOs

 2 versions implemented

 VOQs in BRAM

 VOQs in Xilinx FIFOs

15

On-Chip VOQs

NI Queue Manager – Architecture & Implementation

Linked List Manager

Linked List

Manager

Scheduler Flow Control

Packet

Processor

Host
(PCI-X)

Network
(RocketIO)

External Memory

(Off-chip VOQs)

Memory Controller

Packet

Sorter

On-Chip

VOQs

16

Linked List Manager

 Performs Segment Transfers

 variable-size segments

 fixed-size segments

Manages Linked Lists

 Head, Tail pointers in on-chip memory

 Next Block pointers in DRAM (along data)

 Optimization Techniques

 Free Block Preallocation

 Free-List Bypass

 FSM-based Implementation

17

2 3

Linked List Manager

1. From On-Chip VOQs to Packet Processor

2. From On-Chip to Off-Chip VOQs

3. From Off-Chip VOQs to Packet Processor

Segment Transfers

O
n
-C

h
ip

V
O

Q
s

V
O

Q
s

O
ff

-C
h

ip

max. segment size = 1 block

variable-size segments

fixed-size blocks

fr
o
m

 P
a
c
k
e
t

S
o
rt

e
r

to
 P

a
c
k
e

t
P

ro
c
e

s
s
o

r

1
18

32

Linked List Manager

1. From On-Chip VOQs to Packet Processor

2. From On-Chip to Off-Chip VOQs

3. From Off-Chip VOQs to Packet Processor

Segment Transfers

O
n

-C
h

ip

V
O

Q
s

V
O

Q
s

O
ff

-C
h

ip

max. segment size = 1 block

variable-size segments

1

fixed-size blocks

fr
o
m

 P
a
c
k
e
t

S
o
rt

e
r

to
 P

a
c

k
e

t
P

ro
c

e
s

s
o

r

19

1

32

Linked List Manager

1. From On-Chip VOQs to Packet Processor

2. From On-Chip to Off-Chip VOQs

3. From Off-Chip VOQs to Packet Processor

Segment Transfers

O
n

-C
h

ip

V
O

Q
s

V
O

Q
s

O
ff

-C
h

ip

fr
o
m

 P
a
c
k
e
t

S
o
rt

e
r

to
 P

a
c
k
e

t
P

ro
c
e

s
s
o

r

fixed-size blocks

max. segment size = 1 block

variable-size segments

20

1

32

Linked List Manager

1. From On-Chip VOQs to Packet Processor

2. From On-Chip to Off-Chip VOQs

3. From Off-Chip VOQs to Packet Processor

Segment Transfers

O
n
-C

h
ip

V
O

Q
s

V
O

Q
s

O
ff

-C
h

ip

max. segment size = 1 block

variable-size segments

fixed-size blocks

fr
o
m

 P
a
c
k
e
t

S
o
rt

e
r

to
 P

a
c

k
e

t
P

ro
c

e
s

s
o

r

21

Linked List Manager

 Large VOQs migrate to DRAM

 Traffic stored in linked-lists of fixed-size blocks

 Dynamic allocation of external memory

 Block size needs to be:

 Large to benefit from DRAM burst length

 Small to minimize size of On-Chip VOQs

 2 Basic Operations

 Enqueue

 Dequeue

 Free blocks stored in Free-Block List

Linked List Management

22

Linked List Manager

 Enqueue

 Get free block from Free-Block list

 Write data in the new block

 Update Next-Block pointer of the last block

 Update VOQ Tail pointer

 Dequeue

 Read data from the first block

 Read Next-Block from first block

 Update VOQ Head pointer

 Put free block in Free-Block list

Basic Linked List Operations

23

Linked List Manager

Enqueue/Dequeue Example

0

1

2

3

4

5

…

15

16

17

18

19

20

…

TailHead

TailHead

… …

… …

VOQ Pointers

Free List

Next Free Block

Enqueue into VOQ 5
Enqueue into VOQ 5
Dequeue from VOQ 5

24

DRAM

0

1

…
5

15

…

Linked List Manager

Finite State Machine (FSM)

DEQ1

Idle

DEQUEUE

DEQ2
PUSH FREE BLOCK

PUSHFB2PUSHFB2

POP FREE BLOCK

POPFB2POPFB2 ENQ1

ENQUEUE

ENQ2

SRAM2XBAR

SRAM2XBAR2

SRAM2XBAR1

25

Linked List Manager

Finite State Machine (FSM)

DEQUEUE PUSH FREE BLOCK

POP FREE BLOCK ENQUEUE

On-Chip VOQs

to Packet

Processor

IDLE

26

NI Queue Manager

Scheduler

Scheduler Flow Control

Packet

Processor

Host
(PCI-X)

Network
(RocketIO)

External Memory

(Off-chip VOQs)

Memory Controller

Packet

Sorter

On-Chip

VOQs

Linked List

Manager

27

Scheduler

 Keeps track of each VOQ

 On-chip occupancy

 Off-chip occupancy

 Employs Flow Control (network & local)

 Number of sent data words

 Number of credits

 Implements Scheduling

 Builds VOQ eligibility masks

 Enforces scheduling policy

 Instructs Linked List Manager

28

Scheduler

 Determining Eligibility

 One eligibility mask for each kind of transfer

 Eager approach

 Lazy approach

 Scheduling Policy

 Round-Robin

 Weighted Round-Robin

 Deficit Round-Robin

 Strict Priority

 Starvation?

Scheduling Issues

29

NI Queue Manager

Packet Processor

Packet

Processor

Host
(PCI-X)

Network
(RocketIO)

External Memory

(Off-chip VOQs)

Memory Controller

Packet

Sorter

On-Chip

VOQs

Linked List

Manager

Scheduler Flow Control

30

Packet Processor

 Processes Network Traffic

 Receives variable-size segments

 Creates autonomous network packets

 Performs 3 Basic Operations

 Insert header

 Modify header

 Delete header

 Implemented as 3-stage pipeline

 Greatly depends on packet nature

 RDMA packets well suited

31

Packet Processor

Example of packet processing

= Packet Header = Packet Body

Segment 1Segment 2Seg 3Seg 4Seg 5

Packet 1Pck 2Pck 3Packet 4Packet 5

Modify

Insert

DeleteModify

InsertInsert

Insert

:: : : :

= End of Packet:

Traffic passing through Packet Processor

32

NI Queue Manager

 3 major versions

 Full

 “No external memory”

 “No VSMP segmentation”

 Variations of individual modules

 Packet Processor
 with/without segmentation

 On-Chip VOQs
 with BRAM/Xilinx FIFOs

 Linked List Manager
 with/without external memory support

Implementation

33

NI Queue Manager

FPGA Hardware Cost Results (8 VOQs)

Module LUTs Slices Flip Flops BRAMs Gate Count

Packet Sorter with segmentation 179 (1%) 135 (1%) 80 (1%) 0 (0%) 1909

Packet Sorter no segmentation 42 (1%) 25 (1%) 12 (1%) 0 (0%) 392

On-Chip VOQs BRAM 320 (1%) 236 (1%) 170 (1%) 31 (16%) 2035342

On-Chip VOQs Xilinx FIFOs 904 (2%) 1408 (7%) 1648 (4%) 32 (16%) 2119015

Scheduler 2240 (5%) 1256 (6%) 428 (1%) 1 (1%) 86226

Linked List Mgrwith ext mem 680 (1%) 365 (1%) 425 (1%) 0 (0%) 7069

Linked List Mgrno ext mem 33 (1%) 23 (1%) 18 (1%) 0 (0%) 426

Packet Processor 521 (1%) 511 (2%) 617 (1%) 0 (0%) 9983

Queue Mgr Version LUTs Slices Flip Flops BRAMs Gate Count

Full 2962 (7%) 2106 (10%) 1571 (3%) 34 (17%) 2263151

No External Memory 2713 (6%) 1900 (9%) 1467 (3%) 34 (17%) 2260321

No VSMPS 3430 (8%) 2639 (13%) 2286 (5%) 37 (19%) 2471047

34

NI Queue Manager

Network Performance Results*

Throughput measurements using

unbalanced traffic patterns.

Average Delay vs. Input Load under

uniform traffic. Max load is 96%.

*The experiments were conducted by Vassilis Papaefstathiou, member of the CARV team

Verified previous theoretical and simulation results about

the behavior and performance of buffered crossbar.

35

Presentation Outline

 NI Queue Manager

 Introduction

 Key Concepts

 Architecture & Implementation

 NI Design for CMPs

 NI Design Goals

 NI Design Issues

 Proposed NI Design

 Conclusions & Future Work

36

IPC: NI Design Issues

 High Performance

 Low Latency

 High Bandwidth

 Scalability

 Reliability

 Protection & Security

 Communication Overhead Minimization

NI Design Goals

37

Presentation Outline

 NI Queue Manager

 Introduction

 Key Concepts

 Architecture & Implementation

 NI Design for CMPs

 NI Design Goals

 NI Design Issues

 Proposed NI Design

 Conclusions & Future Work

38

NI Design Issues

NI Placement

1. I/O Bus

2. Memory Bus

3. Cache

4. CPU Registers

Processor

Proximity

Higher Performance

Proprietary Interfaces

Resource Sharing

Less Buffer Space

Lower Performance

Standard Interfaces

More Buffer Space

39

NI Design Issues

 Programmed IO (PIO)

 Uncached stores, loads or I/O instructions

 Low bandwidth

 Cached stores, loads

 data transferred in cache blocks

 requires coherence

 Occupies Processor to copy data

 Using Direct Memory Access (DMA)

 Decouples Processor

 Requires Virtual to Physical Address Translation

NI Data Transfer Mechanisms

40

NI Design Issues

 Traditional approach

 System Call to Access NI

 Very Costly (high latency)

 User-level NIs (ULNIs)

 Bypass the OS

 Mapped to Virtual Memory

 Uses OS paging mechanism

for protection

NI Virtualization & Protection

User-level

Software

Operating

System

NI Hardware

User-level

Software

Operating

System

NI Hardware

41

Presentation Outline

 NI Queue Manager

 Introduction

 Key Concepts

 Architecture & Implementation

 NI Design for CMPs

 NI Design Goals

 NI Design Issues

 Proposed NI Design

 Conclusions & Future Work

42

Proposed NI Design

 Targeted to future Chip Multiprocessors
 thousands to millions of nodes

 Tightly coupled with the processor

 Low Complexity/Cost
 Compared to processor and local memory

 Resources (e.g. memory)
 Shared with Processor

 Dynamically allocated (only to active connections)

 Low Overhead transfer initiation

 Powerful Communication Primitives
 Bulky Data Transfers

 Control & Synchronization Traffic

Design Goals / Desired Features

43

Proposed NI Design

Target Hardware/System

Xilinx XUP board

CPU: PowerPC

OS: Linux

On-chip BRAM

 Scratchpad

 Cache?

External DRAM

 10 Gbps Network

 RocketIO

44

Proposed NI Design

Target Hardware/System

PowerPC
@ 266 MHz

On-chip Memory
(low latency, high throughput,

8 dual-port BRAM banks)

Network

Network Interface simple

and small compared to

CPU and its local memory

NI

PLB

OCM ?

FPGA

10 Gbps

10 Gbps

@133 MHz

DRAM
@133MHz

@166 MHz

Xilinx XUP

Shared among

CPU and NI

45

Proposed NI Design

 Remote DMA

 Bulky Data Transfers

 Producer-Consumer

 Facilitates Zero-Copy Protocols

 Requires Virtual-to-Physical Translation

Message Queues

 Low Latency, Minimal Overhead communication

 Small Data Transfers

 One-to-One, One-to-Many, Many-to-One

 Powerful synchronization primitive

Communication Primitives

46

Proposed NI Design

Message Queues

Queues

 One-to-One: e.g. Small Data Transfers

 One-to-Many: e.g. Job Dispatching

 Many-to-One: e.g. Synchronization

47

Proposed NI Design

Mechanism for

 Sending Messages

 Initiating RDMA operations

 A Connection consists of:

 Queue Pair (Incoming & Outgoing)

 Information needed for RDMA

 Various Queue, Flow Control metadata

 Connection Types

 One-to-One (lower overhead, higher security)

 Many-to-Many (better resource utilization)

Connections

48

Proposed NI Design

 One-to-One

 Incoming & Outgoing Queue is One-to-One

 Many-to-Many

 Incoming Queue is Many-to-One Or/And

Outgoing Queue is One-to-Many

Connection Types

49

Proposed NI Design

 One-to-One: Local Communication

 Many-to-Many: Global Communication

Connection Types - Example

50

Proposed NI Design

Connection Table (CT)

Connection Table (CT)

ConnectionID or CID

CID

Scratchpad

CID

CID

CID

CID

CID
…

Scratchpad

Node Memory

Connection Table Entry (CTE)

…

 Connections reside in Connection Table in

the form of Connection Table Entries (CTEs)

51

Proposed NI Design

 Each CTE stores

 Destination Info (for one-to-one)

 Protection Info (for many-to-many)

 Incoming/Outgoing Queue Info

 Incoming/Outgoing RDMA Info

 Flow Control Info

 Other Info

 e.g. Notification Type

Connection Table Entry (CTE)

52

Proposed NI Design

Connection Table Entry for Xilinx XUP

B8 (32)B7 (32)B6 (32)B5 (32)B4 (32)B3 (32)B2 (32)B1 (32)CID

Base (6) Start (8) End (8) Head (10)

System-level

Outgoing Queue Info

Outgoing

RDMA Info

Base (6) Start (8) End (8) Tail (10)

System-level

Incoming Queue Info

Incoming

RDMA Info

Outgoing

Tail (10)

Incoming

Head (10)

User-level

Outgoing Queue Info

User-level

Incoming Queue Info

System-level

Connection Info

System-level

Connection Info

Remote

Node ID (24)

Remote

CID (16)
PGID (16)

53

Proposed NI Design

Software Interface

 Send Message or Initiate RDMA

 Read Head/Tail of Outgoing Queue

 Post Descriptor

 Write Tail of Outgoing Queue

 (Poll Head of Outgoing Queue)

 Receive Message or RDMA Notification

 Poll Tail of Incoming Queue (or get Interrupt)

 Read Message (or Descriptor)

 Write Head of Incoming Queue

54

Proposed NI Design

Software Interface - Descriptors

55

Proposed NI Design

Protection – Intranode Protection

Process 13

Kernel

NI Hardware

Process 42

Process 27

User-Level

 Isolation of malicious processes. Not allowed to:

 Read or write data of connections of other processes

 Corrupt connections of other processes

56

Proposed NI Design

Protection – Internode Protection

 Isolation of compromised node. Not allowed to:

 Compromise other nodes

 Corrupt connections of other processes

Node A Node B

Node D Node C

Node E

57

Proposed NI Design

Protection in the Proposed NI

 Creation of 3 Protection Zones

CID

CID

CID

CID

CID

CID

CID

CID

Connection Table
Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 Bank 8

High protection

e.g. banks written

only by special NI

hardware or run-time

system

Moderate protection

e.g. banks written only by

system-level software

(e.g. kernel driver)

Low protection

e.g. banks written by

everyone including

user-level software

58

Proposed NI Design

Controlling Access to the CT

 Distinguish User-level from Kernel-level

 Use of Shadow Address Spaces

 Double the required Address Space

Mapped to system-

level process

Virtual Address Space

Physical Address Space

CTE

0xFFFF1ABC

0xFFFF0ABC

0xDEADBEEF Normal Physical

Address Space

Mapped to user-

level process

Shadow Physical

Address Space

0x123456EF

Connection Table

59

Proposed NI Design

Controlling Access to the CT

 Distinguish different User-level processes

 Fine-grain protection

Process 1

virtual page

Virtual Address Space

Connection TableProcess 1

physical page

Physical Address

Space

Process 2

virtual page

Process 3

virtual page

Process 2

physical page

Process 3

physical page

Process 4

physical page

32 CTEs

Process 4

virtual page

32 CTEs

32 CTEs

32 CTEs

Page

60

Presentation Outline

Key Concepts

NI Queue Manager

Architecture

 Implementation

IPC: NI Design Issues

Proposed NI Design

Conclusions & Future Work

61

Conclusions & Future Work

 NI Queue Manager
 Feasibility and Effectiveness of VSMPS

 Confirmed buffered crossbar results

 Novel Packet Processing Mechanism
 Eliminates need for reassembly

 Proposed NI Design
 Lightweight, well suited to future CMPs

 Powerful communication primitives
 Message Queues, Remote DMA

 Notion of Connections/Queues

 Versatile Protection & Security Mechanisms

Conclusions

62

Conclusions & Future Work

 NI Queue Manager

 Scalability

 Dynamic memory allocation for On-Chip VOQs

 Proposed NI Design

 Process migration

 Flow control

 Efficient cache coherence support

Future Work

63

Thank You!

64

